These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Multiple low-dose and single high-dose treatments with streptozotocin do not generate nitric oxide.
    Author: Papaccio G, Pisanti FA, Latronico MV, Ammendola E, Galdieri M.
    Journal: J Cell Biochem; 2000 Feb; 77(1):82-91. PubMed ID: 10679819.
    Abstract:
    Streptozotocin (STZ) is a widely used diabetogenic agent that damages pancreatic islet beta cells by activating immune mechanisms, when given in multiple low doses, and by alkylating DNA, when given at a single high dose. Actually, STZ contains a nitroso moiety. Incubation of rat islets with this compound has been found to generate nitrite; moreover, photoinduced NO production from STZ has been demonstrated. These reports have suggested that direct NO generation may be a mechanism for STZ toxicity in diabetogenesis. Several other studies have denied such a mechanism of action. This study has shown that (1) the multiple low-dose (MLDS) treatment does not stimulate NO production at the islet level; in fact, nitrite + nitrate levels and aconitase activity (also in the presence of an NO-synthase inhibitor, namely NAME) remain unmodified; RT-PCR analysis demonstrates that this treatment does not stimulate iNOS activity; (2) the high-dose (HDS) treatment does not stimulate NO production; in fact nitrite + nitrate levels remain unmodified and iNOS mRNA levels are not altered, although aconitase activity is significantly decreased. Moreover, we have confirmed that the MLDS treatment is able to decrease SOD activity by day 11 and that STZ, given in a single high dose, transiently increases superoxide dismutase (SOD) values (24 h from the administration), then dramatically lowers SOD levels. On the basis of our results, we conclude that STZ, "in vivo" is unable to generate NO, both as a MLDS or HDS treatment, thus excluding that NO exerts a role in streptozotocin-dependent diabetes mellitus.
    [Abstract] [Full Text] [Related] [New Search]