These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Purification, stabilization and characterization of tomato fatty acid hydroperoxide lyase. Author: Suurmeijer CN, Pérez-Gilabert M, van Unen DJ, van der Hijden HT, Veldink GA, Vliegenthart JF. Journal: Phytochemistry; 2000 Jan; 53(2):177-85. PubMed ID: 10680169. Abstract: Fatty acid hydroperoxide lyase (HPO-lyase) was purified 300-fold from tomatoes. The enzymatic activity appeared to be very unstable, but addition of Triton X100 and beta-mercaptoethanol to the buffer yielded an active enzyme that could be stored for several months at -80 degrees C. The enzyme was inhibited by desferoxamine mesylate (desferal), 2-methyl-1,2-di-3-pyridyl-1-propanone (metyrapone), nordihydroguaiaretic acid (NDGA), n-propyl gallate and butylated hydroxyanisole, suggesting the involvement of free radicals in the reaction mechanism and the existence of a prosthetic group in the active center. However, no heme group could be demonstrated with the methods commonly used to identify heme groups in proteins. Only 13-hydroperoxides from linoleic acid (13-HPOD) and alpha-linolenic acid (alpha-13-HPOT) were cleaved by the tomato enzyme, with a clear preference for the latter substrate. The pH-optimum was 6.5, and for concentrations lower than 300 microM a typical Michaelis-Menten curve was found with a K(m) of 77 microM. At higher alpha-13-HPOT concentrations inhibition of the enzyme was observed, which could (at least in part) be attributed to 2E-hexenal. A curve of the substrate conversion as a function of the enzyme concentration revealed that 1 nkat of enzyme activity converts 0.7 mumol alpha-13-HPOT before inactivation. Headspace analysis showed that tomato HPO-lyase formed hexanal from 13-HPOD and 3Z-hexenal from alpha-13-HPOT. A trace of the latter compound was isomerized to 2E-hexenal. In addition to the aldehydes, 12-oxo-9Z-dodecenoic acid was found by GC/MS analysis. To a small extent, isomerization to 12-oxo-10E-dodecenoic acid occurred.[Abstract] [Full Text] [Related] [New Search]