These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Possible involvement of beta-adrenergic receptors in the enhancement of nocturnal pineal N-acetyltransferase activity due to parathion administration. Author: Attia AM. Journal: Toxicology; 2000 Jan 03; 142(2):79-86. PubMed ID: 10685507. Abstract: The purpose of the present study was to examine the effects of administration of sublethal doses of O,O-diethyl-O-p-nitrophenyl phosphorothioate (parathion) on serum epinephrine (EPI) and norepinephrine (NE), as well as on night-time rat pineal melatonin synthesis, both in the presence and absence of propranolol, a beta-adrenergic receptor antagonist. In the first experiment, two groups of adult albino rats were administered parathion orally (1.08 and 2.17 mg/kg/day; the total received by each animal was 6.5 and 13.0 mg/kg body weight over 6 days); another two groups received corn oil only. Animals were killed at 23:00 and 01:00 h by decapitation. Serum EPI was augmented at 01:00 h, but NE was increased at 01:00 and 23:00 h due to administration of the high dose of parathion (13 mg/kg). In the second experiment, two groups of adult male albino rats were administered parathion orally (13 mg/kg); another two groups received an intraperitoneal injection of propranolol (20 mg/kg body weight, 1 h before the lights were turned off). In addition, two groups were given a saline injection. Four hours after darkness onset, pineal N-acetyltransferase (NAT) activity as well as pineal and serum melatonin levels were measured. Parathion by itself significantly augmented nocturnal pineal NAT activity and serum melatonin levels in otherwise untreated rats; the insecticide was ineffective in reference to this enzyme when it was given in conjunction with the beta-adrenergic receptor antagonist propranolol. The augmentation of NAT activity by parathion also caused significant reduction in pineal serotonin (5-HT); again, this response was blocked by propranolol treatment. The results are consistent with the idea that parathion influences pineal 5-HT metabolism either at the level of the beta-adrenergic receptor or via the sympathetic innervation to the pineal gland.[Abstract] [Full Text] [Related] [New Search]