These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Effect of cyclic adenosine 3',5'-monophosphate and protein kinase A on ligand-dependent transactivation via the vitamin D receptor. Author: Nakajima S, Yamagata M, Sakai N, Ozono K. Journal: Mol Cell Endocrinol; 2000 Jan 25; 159(1-2):45-51. PubMed ID: 10687851. Abstract: We examined the effects of cyclic adenosine 3',5'-monophosphate (cAMP) and protein kinase A (PKA) on the ligand-dependent transactivation mediated via the 1,25-dihydroxyvitamin D3 (1,25(OH)2D3) receptor (VDR). A human VDR expression plasmid was transfected into HeLa, Saos-2 and MG63 cells with a luciferase reporter gene construct containing the vitamin D responsive element. With the addition of 0.5 mM 8 bromo-cAMP, the response to 1,25(OH)2D3 was suppressed to 61 and 78% in the HeLa and Saos-2 cells, respectively. The suppressive effect of 8 bromo-cAMP was observed without the introduction of the VDR expression plasmid in the MG63 cells. In the HeLa cells the co-expression of PKA reduced the ligand-inducible transactivation to 61% and the fold induction by 1,25(OH)2D3 to 89% of that without PKA. The CREB binding protein (CBP) was recently reported to integrate the intracellular signals via the cAMP/PKA cascade and nuclear hormone receptors. However, the suppressive effect of cAMP was not influenced by the co-expression of CBP. Lastly, we introduced point mutations at possible PKA phosphorylation sites into the VDR expression vector at serine-172 and threonine-175, but both mutant receptors still exhibited reduced transactivation with the co-expression of PKA. These results indicate that the phosphorylation of proteins other than the VDR may also be involved in the inhibitory effect mediated by the cAMP/PKA cascade.[Abstract] [Full Text] [Related] [New Search]