These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Interaction of phosphatidylserine synthase from E. coli with lipid bilayers: coupled plasmon-waveguide resonance spectroscopy studies. Author: Salamon Z, Lindblom G, Rilfors L, Linde K, Tollin G. Journal: Biophys J; 2000 Mar; 78(3):1400-12. PubMed ID: 10692325. Abstract: The interaction of phosphatidylserine (PS) synthase from Escherichia coli with lipid membranes was studied with a recently developed variant of the surface plasmon resonance technique, referred to as coupled plasmon-waveguide resonance spectroscopy. The features of the new technique are increased sensitivity and spectral resolution, and a unique ability to directly measure the structural anisotropy of lipid and proteolipid films. Solid-supported lipid bilayers with the following compositions were used: 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC); POPC-1-palmitoyl-2-oleoyl-sn-glycero-3-phosphate (POPA) (80:20, mol/mol); POPC-POPA (60:40, mol/mol); and POPC-1-palmitoyl-2-oleoyl-sn-glycero-3-[phospho-rac-(1-glycerol)] (POPG) (75:25, mol/mol). Addition of either POPA or POPG to a POPC bilayer causes a considerable increase of both the bilayer thickness and its optical anisotropy. PS synthase exhibits a biphasic interaction with the bilayers. The first phase, occurring at low protein concentrations, involves both electrostatic and hydrophobic interactions, although it is dominated by the latter, and the enzyme causes a local decrease of the ordering of the lipid molecules. The second phase, occurring at high protein concentrations, is predominantly controlled by electrostatic interactions, and results in a cooperative binding of the enzyme to the membrane surface. Addition of the anionic lipids to a POPC bilayer causes a 5- to 15-fold decrease in the protein concentration at which the first binding phase occurs. The results reported herein lend experimental support to a previously suggested mechanism for the regulation of the polar head group composition in E. coli membranes.[Abstract] [Full Text] [Related] [New Search]