These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Evolution of arginine biosynthesis in the bacterial domain: novel gene-enzyme relationships from psychrophilic Moritella strains (Vibrionaceae) and evolutionary significance of N-alpha-acetyl ornithinase. Author: Xu Y, Liang Z, Legrain C, Rüger HJ, Glansdorff N. Journal: J Bacteriol; 2000 Mar; 182(6):1609-15. PubMed ID: 10692366. Abstract: In the arginine biosynthetic pathway of the vast majority of prokaryotes, the formation of ornithine is catalyzed by an enzyme transferring the acetyl group of N-alpha-acetylornithine to glutamate (ornithine acetyltransferase [OATase]) (argJ encoded). Only two exceptions had been reported-the Enterobacteriaceae and Myxococcus xanthus (members of the gamma and delta groups of the class Proteobacteria, respectively)-in which ornithine is produced from N-alpha-acetylornithine by a deacylase, acetylornithinase (AOase) (argE encoded). We have investigated the gene-enzyme relationship in the arginine regulons of two psychrophilic Moritella strains belonging to the Vibrionaceae, a family phylogenetically related to the Enterobacteriaceae. Most of the arg genes were found to be clustered in one continuous sequence divergently transcribed in two wings, argE and argCBFGH(A) ["H(A)" indicates that the argininosuccinase gene consists of a part homologous to known argH sequences and of a 3' extension able to complement an Escherichia coli mutant deficient in the argA gene, encoding N-alpha-acetylglutamate synthetase, the first enzyme committed to the pathway]. Phylogenetic evidence suggests that this new clustering pattern arose in an ancestor common to Vibrionaceae and Enterobacteriaceae, where OATase was lost and replaced by a deacylase. The AOase and ornithine carbamoyltransferase of these psychrophilic strains both display distinctly cold-adapted activity profiles, providing the first cold-active examples of such enzymes.[Abstract] [Full Text] [Related] [New Search]