These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Inositol tetrakisphosphate as a frequency regulator in calcium oscillations in HeLa cells. Author: Zhu DM, Tekle E, Huang CY, Chock PB. Journal: J Biol Chem; 2000 Mar 03; 275(9):6063-6. PubMed ID: 10692393. Abstract: Cellular signaling mediated by inositol (1,4,5)trisphosphate (Ins(1, 4,5)P(3)) results in oscillatory intracellular calcium (Ca(2+)) release. Because the amplitude of the Ca(2+) spikes is relatively invariant, the extent of the agonist-mediated effects must reside in their ability to regulate the oscillating frequency. Using electroporation techniques, we show that Ins(1,4,5)P(3), Ins(1,3,4, 5)P(4), and Ins(1,3,4,6)P(4) cause a rapid intracellular Ca(2+) release in resting HeLa cells and a transient increase in the frequency of ongoing Ca(2+) oscillations stimulated by histamine. Two poorly metabolizable analogs of Ins(1,4,5)P(3), Ins(2,4,5)P(3), and 2,3-dideoxy-Ins(1,4,5)P(3), gave a single Ca(2+) spike and failed to alter the frequency of ongoing oscillations. Complete inhibition of Ins(1,4,5)P(3) 3-kinase (IP3K) by either adriamycin or its specific antibody blocked Ca(2+) oscillations. Partial inhibition of IP3K causes a significant reduction in frequency. Taken together, our results indicate that Ins(1,3,4,5)P(4) is the frequency regulator in vivo, and IP3K, which phosphorylates Ins(1,4, 5)P(3) to Ins(1,3,4,5)P(4), plays a major regulatory role in intracellular Ca(2+) oscillations.[Abstract] [Full Text] [Related] [New Search]