These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: 3-Hydroxy-3-methylglutaryl-coenzyme A reductase activity is inhibited by cholesterol and up-regulated by sitosterol in sitosterolemic fibroblasts.
    Author: Honda A, Salen G, Honda M, Batta AK, Tint GS, Xu G, Chen TS, Tanaka N, Shefer S.
    Journal: J Lab Clin Med; 2000 Feb; 135(2):174-9. PubMed ID: 10695663.
    Abstract:
    Sitosterolemia is an inherited recessive disease characterized by abnormally increased plasma and tissue plant sterol concentrations. Patients hyperabsorb sitosterol. In addition, hepatic, ileal, and mononuclear leukocyte 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase, the rate-controlling enzyme in the cholesterol biosynthetic pathway, is markedly suppressed in this disease. It is still controversial whether the down-regulation is due to accumulated sitosterol, but the effect of sitosterol on HMG-CoA reductase activity has not been studied in sitosterolemic tissues. To investigate whether sitosterol inhibits HMG-CoA reductase activity in sitosterolemia, we measured the enzyme activities in liver and cultured skin flbroblasts from patients. Hepatic HMG-CoA reductase activities in patients were decreased 76% (P < .05) as compared with results in control subjects. In contrast, HMG-CoA reductase activities in sitosterolemic fibroblasts were not decreased as compared with results in control fibroblasts, and the activities in all cells were up-regulated similarly when they were exposed to delipidated medium. Because the cultured sitosterolemic fibroblasts contained only trace amounts of plant sterols, we added 20 microg/mL sitosterol directly to the cell medium. Raising the intracellular sitosterol concentration to 7% of cellular cholesterol level increased HMG-CoA reductase activity 23% (P < .05), while the addition of the same amount of cholesterol to the cells reduced the activity 46% (P < .05). Thus, when sitosterolemic skin fibroblasts were used, it was possible to distinguish between the effects of cholesterol and those of sitosterol on the activity of HMG-CoA reductase. These results suggest that reduced HMG-CoA reductase activity in this disease is caused by secondary effects of unknown regulator(s) other than sitosterol.
    [Abstract] [Full Text] [Related] [New Search]