These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Nitric oxide-dependent vasodilatation of rabbit femoral artery by beta(2)-adrenergic stimulation or cyclic AMP elevation in vivo. Author: Xu B, Li J, Gao L, Ferro A. Journal: Br J Pharmacol; 2000 Mar; 129(5):969-74. PubMed ID: 10696097. Abstract: Some studies suggest that beta-adrenoceptor-mediated vasorelaxation is in part mediated through nitric oxide (NO) release. We wished to determine the contribution of the L-arginine / NO system to vasodilatation in response to beta-adrenoceptor stimulation with isoprenaline or cyclic adenosine-3',5'-monophosphate (cyclic AMP) elevation with forskolin and dibutyryl cyclic AMP in vivo, using a rabbit femoral artery constant perfusion model. Baseline femoral artery pressure was similar in rabbits receiving isoprenaline, forskolin or dibutyryl cyclic AMP. Isoprenaline, forskolin and dibutyryl cyclic AMP each decreased femoral artery pressure in a dose-dependent manner. The doses (mol kg(-1)) of isoprenaline, forskolin and dibutyryl cyclic AMP which decreased pressure by 10% from baseline, expressed as a negative logarithm (-log ED(10)) were: 10.0+/-0.2, 9.5+/-0.1 and 4.9+/-0.1 respectively (P<0.0001 for each). Use of beta-adrenoceptor subtype-selective antagonists showed that the vascular response to isoprenaline was purely due to stimulation of the beta(2)-adrenoceptor subtype. Injection of 1 micromol kg(-1) N(G)-nitro-L-arginine methyl ester (L-NAME) did not alter baseline pressure. However, it abolished the pressure response to isoprenaline (P<0.0001), and significantly attenuated the pressure responses to forskolin and dibutyryl cyclic AMP: -log ED(10) values for forskolin and dibutyryl cyclic AMP, in the presence of L-NAME, were 7.9+/-0.1 and 3.5+/-0.3 respectively (P<0.0001 for each, as compared with values in the absence of L-NAME). These results indicate that beta(2)-adrenergic stimulation and cylic AMP elevation activate the L-arginine/NO system in rabbit femoral artery in vivo, and that NO generation contributes importantly to the changes in vascular tone induced by agents which modulate beta-adrenoceptors or cyclic AMP.[Abstract] [Full Text] [Related] [New Search]