These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: 1,25-dihydroxyvitamin D3 treatment decreases macrophage accumulation in the CNS of mice with experimental autoimmune encephalomyelitis. Author: Nashold FE, Miller DJ, Hayes CE. Journal: J Neuroimmunol; 2000 Mar 01; 103(2):171-9. PubMed ID: 10696912. Abstract: Sunlight, which is required for vitamin D biosynthesis, may be protective in multiple sclerosis (MS), due to the immunoregulatory functions of 1,25-dihydroxyvitamin D3 (1,25-(OH)2D3), the hormonally active vitamin D metabolite. This hypothesis provided the impetus for the experiments reported here investigating mechanisms whereby 1,25-(OH)2D3 may inhibit murine experimental autoimmune encephalomyelitis (EAE). Severe EAE was induced, 1,25-(OH)2D3 or mock treatment was administered, and clinical disease, histopathological disease, and encephalitogenic cells in the central nervous system (CNS) were analyzed within 24-72 h of the treatment. The mock-treated mice remained paralyzed (stage 3 EAE) while most hormone-treated animals regained the partial use of both hind limbs (stage 2 EAE) within 72 h of treatment. A histopathological examination showed the hormone-treated mice had a 50% decrease in white matter and meningeal inflammation at 72 h post treatment. A flow cytometric analysis of cell surface markers on spinal cord cells recovered 24 h post treatment showed the mock-treated mice with EAE had about 7.0 +/- 2.3 million Mac-1+ cells/cord, whereas the hormone-treated mice had about 2.1 +/- 2.6 million Mac-1+ cells/cord, which was not significantly different from the unmanipulated control mice. Otherwise, the flow cytometric analysis detected no significant differences between the groups with respect to CD4+ or CD8+ T cells or B cells or macrophages in draining lymph nodes or spinal cords. These results are discussed with regard to possible fates for the 5 million Mac-1+ cells that were rapidly lost from the inflamed CNS in the 1,25-(OH)2D3-treated mice, and the possible beneficial effect of hormone treatment in resolving acute MS.[Abstract] [Full Text] [Related] [New Search]