These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Allosteric regulation of neuronal nitric oxide synthase by tetrahydrobiopterin and suppression of auto-damaging superoxide.
    Author: Kotsonis P, Fröhlich LG, Shutenko ZV, Horejsi R, Pfleiderer W, Schmidt HH.
    Journal: Biochem J; 2000 Mar 15; 346 Pt 3(Pt 3):767-76. PubMed ID: 10698705.
    Abstract:
    The underlying mechanisms regulating the activity of the family of homodimeric nitric oxide synthases (NOSs) and, in particular, the requirement for (6R)-5,6,7,8-tetrahydro-L-biopterin (H(4)Bip) are not fully understood. Here we have investigated possible allosteric and stabilizing effects of H(4)Bip on neuronal NOS (NOS-I) during the conversion of substrate, L-arginine, into L-citrulline and nitric oxide. Indeed, in kinetic studies dual allosteric interactions between L-arginine and H(4)Bip activated recombinant human NOS-I to increase L-arginine turnover. Consistent with this was the observation that H(4)Bip, but not the pterin-based NOS inhibitor 2-amino-4,6-dioxo-3,4,5,6,8,8a,9,10-octahydrooxazolo[1, 2-f]-pteridine (PHS-32), caused an L-arginine-dependent increase in the haem Soret band, indicating an increase in substrate binding to recombinant human NOS-I. Conversely, L-arginine was observed to increase in a concentration-dependent manner H(4)Bip binding to pig brain NOS-I. Secondly, we investigated the stabilization of NOS quaternary structure by H(4)Bip in relation to uncoupled catalysis. Under catalytic assay conditions and in the absence of H(4)Bip, dimeric recombinant human NOS-I dissociated into inactive monomers. Monomerization was related to the uncoupling of reductive oxygen activation, because it was inhibited by both superoxide dismutase and the inhibitor N(omega)-nitro-L-arginine. Importantly, H(4)Bip was found to react chemically with superoxide (O(2)(-.)) and enzyme-bound H(4)Bip was consumed under O(2)(-.)-generating conditions in the absence of substrate. These results suggest that H(4)Bip allosterically activates NOS-I and stabilizes quaternary structure by a novel mechanism involving the direct interception of auto-damaging O(2)(-.).
    [Abstract] [Full Text] [Related] [New Search]