These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Preparation of pneumococcal capsular polysaccharide-protein conjugate vaccines utilizing new fragmentation and conjugation technologies. Author: Pawlowski A, Källenius G, Svenson SB. Journal: Vaccine; 2000 Mar 17; 18(18):1873-85. PubMed ID: 10699336. Abstract: There is a global urgent need for a new efficient and inexpensive vaccine to combat pneumococcal disease, which should also be affordable in developing countries. In view of this need a simple low-cost technique to prepare such a vaccine was developed. The preparation of serotype 14 and 23F pneumococcal capsular polysaccharide (PnPS)-protein conjugates to be included in a forthcoming multivalent PnPS conjugate vaccine is described. Commercial lots of PnPSs produced according to Good Manufacturing Practice from Streptococcus pneumoniae serotype 14 (PS14) and 23F (PS23F) were partially depolymerized by sonication or irradiation in an electron beam accelerator. The PnPS fragments were conjugated to tetanus toxoid (TT) using a recently developed conjugation chemistry. The application of these new simple, efficient and inexpensive fragmentation and conjugation technologies allowed the synthesis of several PnPS-protein conjugates containing PnPS fragments of preselected sizes and differing in the degree of substitution. The PS14TT and PS23FTT conjugate vaccine candidates were characterized chemically and their immunogenicity was evaluated in rabbits and mice. All PnPS conjugate vaccines, unlike the corresponding plain polysaccharides, produced high IgG titres in both animal species. The PS14TT conjugates tended to be more immunogenic than the PS23FTT conjugates. The immune response to the PS14TT conjugates, but not to the PS23FTT conjugates, was related to the size of the conjugated polysaccharide hapten. Both types of conjugates elicited strong booster effects upon secondary immunizations, resulting in high IgG1, IgG2a and IgG2b titres.[Abstract] [Full Text] [Related] [New Search]