These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: In vitro antibacterial activity and mechanism of action of J-111,225, a novel 1beta-methylcarbapenem, against transferable IMP-1 metallo-beta-lactamase producers.
    Author: Nagano R, Adachi Y, Hashizume T, Morishima H.
    Journal: J Antimicrob Chemother; 2000 Mar; 45(3):271-6. PubMed ID: 10702544.
    Abstract:
    IMP-1 beta-lactamase, a class B zinc metallo-enzyme encoded by the transferable bla(IMP) gene, is known to confer high-level resistance to carbapenems as well as to penicillins and cephalosporins. J-111, 225 is a novel 1beta-methylcarbapenem with a structurally unique side chain comprising a trans-3,5-disubstituted pyrrolidinylthio moiety at the C2 position. It inhibited 17 Serratia marcescens and two Pseudomonas aeruginosa IMP-1-producing clinical isolates at a concentration of 32 mg/L (range 4-32 mg/L). It showed synergy with imipenem against IMP-1-producing S. marcescens BB5886 and P. aeruginosa GN17203 with minimal FIC indices of 0.38 and 0.5, respectively. J-111,225 was more resistant than imipenem to hydrolysis by class B metallo-beta-lactamases. In kinetic studies, J-111,225 inhibited the IMP-I enzyme with a K(i) of 0.18 microM when imipenem was used as a substrate. In contrast, J-111,225 was the substrate for hydrolysis by other class B beta-lactamases such as Bacteroides fragilis CcrA, Stenotrophomonas maltophilia L1 and Bacillus cereus type II enzyme with respective K(m) values of 11, 10 and 148 microM. The greater antibacterial activity of J-111,225 against IMP-1-producing bacteria may result from its unique interaction with the beta-lactamase.
    [Abstract] [Full Text] [Related] [New Search]