These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: In vivo infection of ramified microglia from adult cat central nervous system by feline immunodeficiency virus.
    Author: Hein A, Martin JP, Koehren F, Bingen A, Dörries R.
    Journal: Virology; 2000 Mar 15; 268(2):420-9. PubMed ID: 10704350.
    Abstract:
    Infection of microglial cells by the human immunodeficiency virus (HIV) is supposed to play an important role in the pathogenesis of AIDS-related central nervous system (CNS) complications. So far, however, experimental data about interactions between HIV and ramified microglia from the adult CNS were only occasionally reported, making it difficult to understand the exact nature of pathogenic events contributing to HIV-encephalopathy. Therefore, we used the animal model of feline immunodeficiency virus (FIV) infection of domestic cats to establish an experimental system which is suitable for studying the relationships between an immunodeficiency virus and the mature ramified microglia of the central nervous system. By means of density gradient centrifugation approximately 95% pure microglial cells could be isolated from adult feline brain that were characterized by their CD45(low) phenotype. Resident microglia extracted from the CNS of experimentally infected cats harbored FIV-specific DNA and cocultivation with mitogen-activated, but uninfected peripheral blood mononuclear cells (PBMC) resulted in recovery of high-titered infectious virus. Double labeling of brain cell monocultures explanted from persistently infected animals for both microglia and FIV markers disclosed less than 1% of viral antigen expressing microglial cells. This suggests that during the subclinical phase of the infection only a small number of brain-resident macrophages are productively infected. However, interaction of FIV-infected microglia and inflammatory lymphocytes may promote viral replication, thus supporting viral spread in brain tissue.
    [Abstract] [Full Text] [Related] [New Search]