These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: 19-oxygenations of 3-deoxy androgens, potent competitive inhibitors of estrogen biosynthesis, with human placental aromatase. Author: Numazawa M, Nagaoka M, Morio M, Kamiyama T. Journal: J Steroid Biochem Mol Biol; 1999 Dec 31; 71(5-6):173-9. PubMed ID: 10704906. Abstract: Aromatase is a cytochrome P450 enzyme complex that catalyzes the conversion of androst-4-ene-3,17-dione (AD) to estrone through three sequential oxygenations of the 19-methyl group. To gain insight into the ability of 3-deoxy derivative of AD, compound 1, and its 5-ene isomer 4, which are potent competitive inhibitors of aromatase, to serve as a substrate, we studied their 19-oxygenation by human placental aromatase and the metabolites isolated were analyzed by gas chromatography-mass spectrometry. Inhibitors 1 and 4 were found to be oxygenated with aromatase to produce the corresponding 19-hydroxy derivatives 2 and 5 and 19-oxo derivatives 3 and 6 as well as the 17beta-reduced 19-hydroxy compounds 7 and 8. Kinetic studies indicated that the 5-ene steroid 4 was surprisingly a good substrate for the aromatase-catalyzing 19-oxygenation with the V(max) value of 45 pmol/min per mg prot which was approx. four times higher than that of the other. The relative K(m) value for steroids 1 and 4 obtained in this study is opposite from the relative K(i) value obtained previously in the inhibition study. The results reveal that there is a difference between a binding suitable for serving as an inhibitor of aromatase and a binding suitable for serving as a substrate of the enzyme in the 3-deoxy steroid series and the C-3 carbonyl group of AD is essential for a proper binding as a substrate to the active site of aromatase.[Abstract] [Full Text] [Related] [New Search]