These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Phosphatidylinositol-3 kinase and extracellular signal-regulated kinase mediate the chemotactic and mitogenic effects of insulin-like growth factor-I in human hepatic stellate cells. Author: Gentilini A, Marra F, Gentilini P, Pinzani M. Journal: J Hepatol; 2000 Feb; 32(2):227-34. PubMed ID: 10707862. Abstract: BACKGROUND/AIM: Several studies have shown that proliferation of hepatic stellate cells is stimulated by insulin-like growth factor-I. The aim of this study was to investigate the effect of insulin-like growth factor-I on human hepatic stellate cells chemotaxis and the intracellular pathways involved in both mitogenic and chemotactic effects. METHODS/RESULTS: Insulin-like growth factor-I, at the concentration of 100 ng/ml, was able to induce a 2- to 3-fold increase in human hepatic stellate cells migration in a modified Boyden chamber system. This effect was associated with a marked activation of phosphatidylinositol 3-kinase by insulin-like growth factor-I, as evaluated by measurement of phosphatidylinositol 3-kinase activity in phosphotyrosine immunoprecipitates In order to establish a functional link between these observations, we then performed experiments employing two selective phosphatidylinositol 3-kinase inhibitors, namely wortmannin and LY294002. These compounds blocked activation of phosphatidylinositol 3-kinase and inhibited insulin-like growth factor-I-induced hepatic stellate cells migration. Since phosphatidylinositol 3-kinase activation has been shown to be necessary for platelet-derived growth factor-induced mitogenesis in hepatic stellate cells, we verified the effects of phosphatidylinositol 3-kinase inhibition on insulin-like growth factor-I-induced DNA synthesis. Incubation with either wortmannin or LY294002, dose-dependently reduced the mitogenic potential of insulin-like growth factor-I. Since phosphatidylinositol 3-kinase is involved, at least in part, in the activation of the Ras/extracellular signal-regulated kinase pathway in hepatic stellate cells, the role of extracellular signal-regulated kinase activation in mediating the biological effects of insulin-like growth factor-I was explored. Insulin-like growth factor-I induced mitogenesis and chemotaxis were markedly reduced by pre-incubation of hepatic stellate cells with PD-98059, a selective inhibitor of MEK. CONCLUSIONS: Activation of phosphatidylinositol 3-kinase and extracellular signal-regulated kinase is required for both insulin-like growth factor-I-dependent hepatic stellate cells proliferation and chemotaxis. Insulin-like growth factor-I, together with other soluble mediators, may contribute to the hepatic wound-healing response by modulating hepatic stellate cells migration and proliferation.[Abstract] [Full Text] [Related] [New Search]