These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Pharmacological characterization of a novel AVP(4-9) binding site in rat hippocampus.
    Author: Nakayama Y, Takano Y, Shimohigashi Y, Tanabe S, Fujita T, Kamiya H, Tsujimoto G.
    Journal: Brain Res; 2000 Mar 10; 858(2):416-23. PubMed ID: 10708695.
    Abstract:
    pGlu-Asn-Cys (Cys)-Pro-Arg-Gly-NH(2) (AVP(4-9)), a major metabolite C-terminal fragment of Arginine(8)-vasopressin (AVP), improves the disruption of the learning and memory, and is a far more potent in the mnemonic function than AVP. In this study, we pharmacologically characterized its putative binding site and mechanism of intracellular signaling. Radioligand binding assay showed that [35S]AVP(4-9) could detect specific binding sites in the rat hippocampus membrane preparations, and the binding site was specifically displaced by AVP(4-9) but not by either V(1) or V(2) antagonists. Furthermore, [35S]AVP(4-9) could not detect the cloned rat V(1a), V(1b) and V(2) vasopressin receptors. Even at a low doses (10-100 pM), AVP(4-9) caused an increase in both inositol(1,4, 5)-trisphosphate (Ins(1,4,5)P(3)) and intracellular calcium concentrations ([Ca(2+)](i)) in rat hippocampal cells. The AVP(4-9)-induced [Ca(2+)](i) increase was partially inhibited by the absence of Ca(2+) or by Ca(2+)-channel blocker, suggesting that AVP(4-9) caused the [Ca(2+)](i) increase via release from intracellular calcium store as well as influx from extracellular calcium. For the first time, this study provides evidence to show that AVP(4-9) activates Ins(1,4,5)P(3)/[Ca(2+)](i) pathway through a novel type of receptor in rat hippocampus, which might be potentially important in improving the mnemonic function.
    [Abstract] [Full Text] [Related] [New Search]