These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Effects of ketamine on synaptic transmission and long-term potentiation in layer II/III of rat visual cortex in vitro. Author: Salami M, Fathollahi Y, Esteky H, Motamedi F, Atapour N. Journal: Eur J Pharmacol; 2000 Mar 03; 390(3):287-93. PubMed ID: 10708735. Abstract: The effects of ketamine, which has NMDA receptor antagonist properties, on synaptic transmission and long-term potentiation in layer II/III of adult rat visual cortex were examined in vitro. Field potentials were recorded in layer II/III following layer IV stimulation. Primed-burst stimulation was used for induction of long-term potentiation. Stimulation of layer IV resulted in a two-component response in layer II/III, a population excitatory postsynaptic potential1 (EPSP1) and a population excitatory postsynaptic potential2 (EPSP2). DL-2-Amino-5-phosphono-valeric acid (AP5), a competitive NMDA receptor antagonist, reduced the amplitude of the population EPSP1 while ketamine increased the amplitude of the population EPSP2. The results showed that primed-burst stimulation induced long-term potentiation in layer II/III of the visual cortex in vitro. Preincubation for 30 min with AP5 (25-100 microM) reduced the extent of long-term potentiation of the population EPSP2 and blocked the induction of long-term potentiation of the population EPSP1. When ketamine (100-200 microM) was present for 30 min prior to tetanic stimulation, it blocked the induction of long-term potentiation of the population EPSP1 and reduced the extent of long-term potentiation of the population EPSP2. We conclude that ketamine can interfere with synaptic transmission in the visual cortex. Primed-burst stimulation is an effective protocol for neocortical potentiation. NMDA receptors are involved in the induction of long-term potentiation by primed-burst stimulation of the population EPSP1 and population EPSP2 in adult rat visual cortex in vitro.[Abstract] [Full Text] [Related] [New Search]