These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Retinoic acid produces rod photoreceptor selective apoptosis in developing mammalian retina. Author: Söderpalm AK, Fox DA, Karlsson JO, van Veen T. Journal: Invest Ophthalmol Vis Sci; 2000 Mar; 41(3):937-47. PubMed ID: 10711716. Abstract: PURPOSE: All-trans retinoic acid (ATRA) or 9-cis retinoic acid (9CRA), added to dissociated developing neural retinal cells, induces progenitor cells to adopt the rod cell's fate. Retinoic acid (RA) also produces apoptotic cell death in developing tissues. The effects of retinoids on mouse retinal development were examined. METHODS: Retinas were explanted on postnatal day (PN)1 and cultured with or without the retinal pigment epithelium (RPE) attached. Retinas were cultured for 3 weeks in the absence or presence of 100 or 500 nM ATRA or 9CRA. Morphologic development and apoptotic cell death were examined using cell-specific immunocytochemical markers, the TdT-dUTP terminal nick-end labeling (TUNEL) method, and a caspase assay. RESULTS: Retinal explants, with and without RPE, had similar age-dependent increases in opsin expression. In contrast, explants with RPE had less apoptosis during the first week than retinas without RPE. In explants with RPE, ATRA or 9CRA produced rod-selective apoptotic cell death in which 20% to 25% were lost by PN7 with no further loss by PN21. 9CRA-treated explants without RPE had a decreased number of apoptotic cells and a higher number of (rhod)opsin-positive cells at PN3. CONCLUSIONS: Factors in RPE appear to regulate rod apoptosis in developing retina. Retinoids produce rod-selective apoptotic cell death during normal rod differentiation. In contrast, retinoids accelerate the expression of opsin in retinas without RPE. These differential effects of RA on rod photoreceptors-apoptosis and differentiation-are similar to those observed in other developing tissues and play an important role in both normal and pathologic development.[Abstract] [Full Text] [Related] [New Search]