These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Role of endothelin-1 in regulation of the postnatal intestinal circulation.
    Author: Nankervis CA, Nowicki PT.
    Journal: Am J Physiol Gastrointest Liver Physiol; 2000 Mar; 278(3):G367-75. PubMed ID: 10712255.
    Abstract:
    Newborn intestine is uniquely prone to vasoconstriction in response to a wide variety of perturbations. To test the hypothesis that endothelin (ET)-1 is an important factor in this process, we determined the effects of exogenous ET-1 administration and blockade of endogenous ET-1 in vivo and in vitro in 3- and 35-day-old swine. Intramesenteric artery administration of exogenous ET-1 to vascularly isolated in vivo gut loops (10(-9) M/kg bolus) caused vasoconstriction and reduced gut O(2) uptake similarly in these age groups. Selective blockade of ET(A) or ET(B) receptors with BQ-610 or BQ-788, respectively, in vascularly isolated in vivo gut loops had no effect on gut vascular resistance or O(2) uptake in either age group; within in vitro gut loops, BQ-610 significantly increased vasoconstriction when perfusion pressure was reduced below baseline, but only in 3-day-old animals; i.e., it impaired the autoregulatory response to perfusion pressure reduction. Exogenous ET-1 significantly decreased capillary perfusion within in vitro gut loops, as evidenced by a decrease in capillary filtration coefficient, but only in 3-day-old animals; furthermore, blockade of endogenous ET-1 activity with BQ-610 significantly enhanced capillary filtration coefficient in 3-day-old animals and increased O(2) extraction ratio. ET-1 did not depress intestinal metabolic rate, as evidenced by its effect on the O(2) uptake-blood flow relationship; it did compromise tissue oxygenation because of its effects on intestinal O(2) transport. ET-1 concentration in mesenteric venous effluent exceeded arterial concentration, but only in 3-day-old intestine, suggesting production of ET-1 by newborn intestine. We conclude that ET-1 exerts an age-dependent effect on intestinal hemodynamics in postnatal intestine, having a greater impact in 3- than in 35-day-old intestine.
    [Abstract] [Full Text] [Related] [New Search]