These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Periodic expression of the cyclin-dependent kinase inhibitor p57(Kip2) in trophoblast giant cells defines a G2-like gap phase of the endocycle. Author: Hattori N, Davies TC, Anson-Cartwright L, Cross JC. Journal: Mol Biol Cell; 2000 Mar; 11(3):1037-45. PubMed ID: 10712518. Abstract: Endoreduplication is an unusual form of cell cycle in which rounds of DNA synthesis repeat in the absence of intervening mitoses. How G1/S cyclin-dependent kinase (Cdk) activity is regulated during the mammalian endocycle is poorly understood. We show here that expression of the G1/S Cdk inhibitor p57(Kip2) is induced coincidentally with the transition to the endocycle in trophoblast giant cells. Kip2 mRNA is constitutively expressed during subsequent endocycles, but the protein level fluctuates. In trophoblast giant cells synchronized for the first few endocycles, the p57(Kip2) protein accumulates only at the end of S-phase and then rapidly disappears a few hours before the onset of the next S-phase. The protein becomes stabilized by mutation of a C-terminal Cdk phosphorylation site. As a consequence, introduction of this stable form of p57(Kip2) into giant cells blocks S-phase entry. These data imply that p57(Kip2) is subject to phosphorylation-dependent turnover. Surprisingly, although this occurs in endoreduplicating giant cells, p57(Kip2) is stable when ectopically expressed in proliferating trophoblast cells, indicating that these cells lack the mechanism for protein targeting and/or degradation. These data show that the appearance of p57(Kip2) punctuates the completion of DNA replication, whereas its turnover is subsequently required to initiate the next round of endoreduplication in trophoblast giant cells. Cyclical expression of a Cdk inhibitor, by terminating G1/S Cdk activity, may help promote the resetting of DNA replication machinery.[Abstract] [Full Text] [Related] [New Search]