These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Molecular cloning and characterization of ATP-phosphoribosyl transferase from Arabidopsis, a key enzyme in the histidine biosynthetic pathway.
    Author: Ohta D, Fujimori K, Mizutani M, Nakayama Y, Kunpaisal-Hashimoto R, Münzer S, Kozaki A.
    Journal: Plant Physiol; 2000 Mar; 122(3):907-14. PubMed ID: 10712555.
    Abstract:
    We have characterized two isoforms of ATP-phosphoribosyl transferase (ATP-PRT) from Arabidopsis (AtATP-PRT1 [accession no. AB025251] and AtATP-PRT2), catalyzing the first step of the pathway of hisidine (His) biosynthesis. The primary structures deduced from AtATP-PRT1 and AtATP-PRT2 cDNAs share an overall amino acid identity of 74.6% and contain N-terminal chloroplast transit peptide sequences. DNA-blot analyses indicated that the ATP-PRTs in Arabidopsis are encoded by two separate genes with a closely similar gene structural organization. Both gene transcripts were detected throughout development, and protein-blot analysis revealed predominant accumulation of the AtATP-PRT proteins in Arabidopsis leaves. The His auxotrophy of a his1 mutant of Saccharomyces cerevisiae was suppressed by the transformation with AtATP-PRT1 and AtATP-PRT2 cDNAs, indicating that both isoforms are functionally active ATP-PRT enzymes. The K(m) values for ATP and phosphoribosyl pyrophosphate of the recombinant AtATP-PRT proteins were comparable to those of the native ATP-PRTs from higher plants and bacteria. It was demonstrated that the recombinant AtATP-PRTs were inhibited by L-His (50% inhibition of initial activity = 40-320 microM), suggesting that His biosynthesis was regulated in plants through feedback inhibition by L-His.
    [Abstract] [Full Text] [Related] [New Search]