These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: In vitro model for frontal sinus obliteration with bioactive glass S53P4.
    Author: Peltola MJ, Suonpää JT, Andersson H, Määttänen HS, Aitasalo KM, Yli-Urpo A, Laippala PJ.
    Journal: J Biomed Mater Res; 2000; 53(2):161-6. PubMed ID: 10713562.
    Abstract:
    An in vitro model was used to investigate the behavior of a massive frontal sinus obliteration with bioactive glass S53P4 (BG) for clinical purposes. Two sizes of granules (0.63-0.8 mm or 0.8-1.0 mm) in 16 separate BG amounts, weight 25 g, were tested both in simulated body fluid (SBF) and a buffer containing trishydroxymethyl aminomethane citric acid (TRIS-c.a) in standard conditions. The dissolution of silicon (Si) and phosphate (P) was detected with direct current plasma atom emission spectroscopy (DCP-AES) monthly up to 6 months. The BG masses were scanned by computer tomography (CT) and the scans analyzed by Region of Interest (ROI) technique. Calcium phosphate (CaP)- and silica (Si)-gel-layers were studied by scanning electron microscopy (SEM) at 1, 3, and 6 months. Cumulative loss of Si and P was stronger in TRIS -c.a than in SBF (p < 0.0001), and it was higher with smaller than with larger granules in both solutions (p < 0.0001). This was shown correspondingly by the decrease in Hounsfield units (HU) by ROI analysis (p < 0.0001). In SBF-soaked BG masses, the CaP-layer occurred on the uppermost granules, and in TRIS-c.a at 3-6 months, on the granules in the center and lower parts. The decrease of HU seems to reveal indirectly the resorption of BG.
    [Abstract] [Full Text] [Related] [New Search]