These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: The Wuchereria bancrofti orthologue of Brugia malayi SXP1 and the diagnosis of bancroftian filariasis. Author: Rao KV, Eswaran M, Ravi V, Gnanasekhar B, Narayanan RB, Kaliraj P, Jayaraman K, Marson A, Raghavan N, Scott AL. Journal: Mol Biochem Parasitol; 2000 Mar 15; 107(1):71-80. PubMed ID: 10717303. Abstract: The gene encoding the Wuchereria bancrofti orthologue of the Brugia malayi-derived diagnostic antigen SXP1 was identified from a W. bancrofti L3 cDNA library and characterized. The Wb-sxp-1 cDNA encoded a basic protein with a calculated molecular mass of 20.8 kDa. Wb-SXP-1 was 85% identical to the SXP1 protein described from B. malayi (Bm-SXP-1). The Wb-SXP-1 sequence also showed significant identity with proteins described from B. pahangi, Onchocerca volvulus, Acanthochilonema vitea, Ascaris suum, Loa loa, Litomosoides sigmodontis and Caenorhabditis elegans. The presence of a number of invariant and conserved residues in all of these nematode-derived molecules suggests that Wb-SXP-1 is a member of a new protein family. A recombinant form of Wb-SXP-1 was produced and it was determined that the anti-Wb-SXP-1 antibody response in patients with W. bancrofti infections was restricted to the IgG4 subclass. An anti-Wb-SXP-1 IgG4 ELISA was developed and this assay was found to be 100% sensitive for patients with patent W. bancrofti infection. Sera from individuals experiencing chronic pathology, endemic normals or patients with non-filarial nematode infections had no detectable IgG4 against Wb-SXP-1. While patients with patent Onchocerca volvulus infections were uniformly negative in the Wb-SXP-1 assay, 40% of sera from patent Loa loa infections were positive. When Bm-SXP-1 was used as the antigen under identical conditions, the assay was 88% specific for patent W. bancrofti infections and the antigen was recognized by antibodies from both O. volvulus and L. loa infections. The results strongly suggested that, for certain diagnostic filarial antigens, the use of same-species molecules can enhance the specificity of diagnostic tests.[Abstract] [Full Text] [Related] [New Search]