These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: A wavelet-based method for improving signal-to-noise ratio and contrast in MR images.
    Author: Alexander ME, Baumgartner R, Summers AR, Windischberger C, Klarhoefer M, Moser E, Somorjai RL.
    Journal: Magn Reson Imaging; 2000 Feb; 18(2):169-80. PubMed ID: 10722977.
    Abstract:
    Magnetic resonance (MR) images acquired with fast measurement often display poor signal-to-noise ratio (SNR) and contrast. With the advent of high temporal resolution imaging, there is a growing need to remove these noise artifacts. The noise in magnitude MR images is signal-dependent (Rician), whereas most de-noising algorithms assume additive Gaussian (white) noise. However, the Rician distribution only looks Gaussian at high SNR. Some recent work by Nowak employs a wavelet-based method for de-noising the square magnitude images, and explicitly takes into account the Rician nature of the noise distribution. In this article, we apply a wavelet de-noising algorithm directly to the complex image obtained as the Fourier transform of the raw k-space two-channel (real and imaginary) data. By retaining the complex image, we are able to de-noise not only magnitude images but also phase images. A multiscale (complex) wavelet-domain Wiener-type filter is derived. The algorithm preserves edges better when the Haar wavelet rather than smoother wavelets, such as those of Daubechies, are used. The algorithm was tested on a simulated image to which various levels of noise were added, on several EPI image sequences, each of different SNR, and on a pair of low SNR MR micro-images acquired using gradient echo and spin echo sequences. For the simulated data, the original image could be well recovered even for high values of noise (SNR approximately 0 dB), suggesting that the present algorithm may provide better recovery of the contrast than Nowak's method. The mean-square error, bias, and variance are computed for the simulated images. Over a range of amounts of added noise, the present method is shown to give smaller bias than when using a soft threshold, and smaller variance than a hard threshold; in general, it provides a better bias-variance balance than either hard or soft threshold methods. For the EPI (MR) images, contrast improvements of up to 8% (for SNR = 33 dB) were found. In general, the improvement in contrast was greater the lower the original SNR, for example, up to 50% contrast improvement for SNR of about 20 dB in micro-imaging. Applications of the algorithm to the segmentation of medical images, to micro-imaging and angiography (where the correct preservation of phase is important for flow encoding to be possible), as well as to de-noising time series of functional MR images, are discussed.
    [Abstract] [Full Text] [Related] [New Search]