These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Chondroitin sulfates expressed on oligodendrocyte-derived tenascin-R are involved in neural cell recognition. Functional implications during CNS development and regeneration.
    Author: Probstmeier R, Stichel CC, Müller HW, Asou H, Pesheva P.
    Journal: J Neurosci Res; 2000 Apr 01; 60(1):21-36. PubMed ID: 10723065.
    Abstract:
    Tenascin-R (TN-R), an extracellular matrix constituent of the central nervous system (CNS), has been implicated in a variety of cell-matrix interactions underlying axon growth inhibition/guidance, myelination and neural cell migration during development and regeneration. Although most of the functional analyses have concentrated exclusively on the role of the core protein, the contribution of TN-R glycoconjugates present on many potential sites for N- and O-glycosylation is presently unknown. Here we provide first evidence that TN-R derived from whole rat brain or cultured oligodendrocytes expresses chondroitin sulfate (CS) glycosaminoglycans (GAGs), i.e., C-4S and C-6S, that are recognized by CS-56, a CS/dermatan sulfate-specific monoclonal antibody. Based on different in vitro approaches utilizing substrate-bound glycoprotein, we found that TN-R-linked CS GAGs (1) promote oligodendrocyte migration from white matter microexplants and increase the motility of oligodendrocyte lineage cells; (2) similar to soluble CS GAGs, induce the formation of glial scar-like structures by cultured cerebral astrocytes; and (3) contribute to the antiadhesive properties of TN-R for neuronal cell adhesion in an F3/F11-independent manner, but not to neurite outgrowth inhibition, by mechanism(s) sensitive to chondroitinase or CS-56 treatments. Furthermore, after transection of the postcommissural fornix in adult rat, CS-bearing TN-R was found to be stably upregulated at the lesion site. Our findings suggest the functional impact of TN-R-linked CS on neural cell adhesion and migration during brain morphogenesis and the contribution of TN-R to astroglial scar formation (CS-dependent) and axon growth inhibition (CS-independent), i.e., suppression of axon regeneration after CNS injury.
    [Abstract] [Full Text] [Related] [New Search]