These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Magnetic and electrical stimulation of undulating nerve fibres: a simulation study. Author: Schnabel V, Struijk JJ. Journal: Med Biol Eng Comput; 1999 Nov; 37(6):704-9. PubMed ID: 10723876. Abstract: Mathematical models of myelinated nerve fibres are highly stylized abstractions of real nerve fibres. For example, nerve fibres are usually assumed to be perfectly straight. Such idealizations can cause discrepancies between theoretical predictions and experimental results. One well-known discrepancy is that the currently used models predict (contradictory to experimental findings) that an activation of nerve fibres is not possible with a pure transverse electric field. This situation occurs when a magnetic coil is placed symmetrically above a straight nerve fibre for magnetic nerve stimulation, or when an anode and a cathode are placed equidistantly on a line perpendicular to the fibre in the case of electrical stimulation. It is shown that this discrepancy does not occur if the physiological undulation of peripheral nerve fibres is included in the models. Even for small undulation amplitudes (e.g. 0.02 mm), it is possible to activate the fibre in these positions. For physiological undulations, as found in the literature, and favourable (off-centre) positions, the typical reduction of the thresholds is in a range between one and five, compared with perfectly straight fibres.[Abstract] [Full Text] [Related] [New Search]