These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Regulation of the RON receptor tyrosine kinase expression in macrophages: blocking the RON gene transcription by endotoxin-induced nitric oxide. Author: Wang MH, Fung HL, Chen YQ. Journal: J Immunol; 2000 Apr 01; 164(7):3815-21. PubMed ID: 10725742. Abstract: Previous studies have shown that activation of the RON receptor tyrosine kinase inhibits inducible NO production in murine peritoneal macrophages. The purpose of this study is to determine whether inflammatory mediators such as LPS, IFN-gamma, and TNF-alpha regulate RON expression. Western blot analysis showed that RON expression is reduced in peritoneal macrophages collected from mice injected with a low dose of LPS. The inhibition was seen as early as 8 h after LPS challenge. Experiments in vitro also demonstrated that the levels of the RON mRNA and protein are diminished in cultured peritoneal macrophages following LPS stimulation. TNF-alpha plus IFN-gamma abrogated macrophage RON expression, although individual cytokines had no significant effect. Because LPS and TNF-alpha plus IFN-gamma induce NO production, we reasoned that NO might be involved in the RON inhibition. Two NO donors, S-nitroglutathione (GSNO) and (+/-)-S-nitroso-N-acetylpenicillamine (SNAP), directly inhibited macrophage RON expression when added to the cell cultures. Blocking NO production by NO inhibitors like TGF-beta prevented the LPS-mediated inhibitory effect. In Raw264.7 cells transiently transfected with a report vector, GSNO or SNAP inhibited the luciferase activities driven by the RON gene promoter. Moreover, GSNO or SNAP inhibited the macrophage-stimulating protein-induced RON phosphorylation and macrophage migration. We concluded from these data that RON expression in macrophages is regulated during inflammation. LPS and TNF-alpha plus IFN-gamma are capable of down-regulating RON expression through induction of NO production. The inhibitory effect of NO is mediated by suppression of the RON gene promoter activities.[Abstract] [Full Text] [Related] [New Search]