These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Site-directed mutagenesis identifies residues in uncoupling protein (UCP1) involved in three different functions. Author: Echtay KS, Winkler E, Bienengraeber M, Klingenberg M. Journal: Biochemistry; 2000 Mar 28; 39(12):3311-7. PubMed ID: 10727223. Abstract: Using site-specific mutagenesis, we have constructed several mutants of uncoupling protein (UCP1) from brown adipose tissue to investigate the function of acidic side chains at positions 27, 167, 209, and 210 in H(+) and Cl(-) transport as well as in nucleotide binding. The H(+) transport activity was measured with mitochondria and with reconstituted vesicles. These mutant UCPs (D27N, D27E, E167Q, D209N, D210N, and D209N + D210N) are expressed at near wt levels in yeast. Their H(+) transport activity in mitochondria correlates well with the reconstituted protein except for D27N (intrahelical), which shows strong inhibition of H(+) transport in the reconstituted system and only 50% decrease of uncoupled respiration in mitochondria. In the double adjacent acidic residues (between helix 4 and helix 5), mutation of D210 and of D209 decreases H(+) transport 80% and only 20%, respectively. These mutants retain full Cl(-) transport activity. The results indicate that D210 participates in H(+) uptake at the cytosolic side and D27 in H(+) translocation through the membrane. Differently, E167Q has lost Cl(-) transport activity but retains the ability to transport H(+). The separate inactivation of H(+) and Cl(-) transport argues against the fatty acid anion transport mechanism of H(+) transport by UCP. The mutation of the double adjacent acidic residues (D209, D210) decreases pH dependency for only nucleoside triphosphate (NTP) but not diphosphate (NDP) binding. The results identify D209 and D210 in accordance with the previous model as those residues which control the location of H214 in the binding pocket, and thus contribute to the pH control of NTP but not of NDP binding.[Abstract] [Full Text] [Related] [New Search]