These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Urinary protein and albumin excretion corrected by creatinine and specific gravity. Author: Newman DJ, Pugia MJ, Lott JA, Wallace JF, Hiar AM. Journal: Clin Chim Acta; 2000 Apr; 294(1-2):139-55. PubMed ID: 10727680. Abstract: Timed urine collections are difficult to use in clinical practice owing to inaccurate collections making calculations of the 24-h albumin or protein excretion questionable. One of our goals was to assess the 'correction' of urinary albumin and (or) protein excretion by dividing these by either the creatinine concentration or the term, (specific gravity-1)x100(1). The 24-h creatinine excretion can be estimated based on the patients' gender, age and weight. We studied the influence of physiological extremes of hydration and exercise, and protein and creatinine excretion in patients with or suspected kidney disorders. Specimens were collected from healthy volunteers every 4 h during one 24-h period. We assayed the collections individually to give us an assessment of the variability of the analytes with time, and then reassayed them after combining them to give a 24-h urine. For all volunteers, the mean intra-individual CVs based on the 4-h collections expressed in mg/24 h were 80.0% for albumin and 96.5% for total protein (P0.2). The CVs were reduced by dividing the albumin or protein concentration by the creatinine concentration or by the term, (SG-1)x100. This gave a CV for mg albumin/g creatinine of 52% (P<0.1 vs. albumin mg/g creatinine); mg protein/g creatinine of 39% (P<0.05 vs. mg protein/g creatinine); mg albumin/[(SG-1)x100] of 49% (P<0.1 vs. albumin)/[(SG-1)x100]; and mg protein/[(SG-1)x100] of 37% (P<0. 05 vs. mg protein)/[(SG-1)x100]. For the 68 subjects in the study, the strongest correlation was between the creatinine concentrations and the 24-h urine volume: r=0.786, P<0.001. The correlation of (SG-1)x100 vs. the 24-h urine volume was: r=0.606, P<0.001; for (SG-1)x100 and the creatinine concentration, the correlation was: r=0.666, P<0.001. Compared to the volunteers, the albumin and protein excretion in mg/24 h were more variable in the patients. The same was true if the albumin or protein concentrations were divided by the creatinine concentration or by (SG-1)x100. Protein and albumin concentrations were lower in dilute urines. Dividing the albumin or protein concentrations by the creatinine concentration reduced the number of false negative protein and albumin results. Dividing the albumin or protein values in mg/24 h by (SG-1)x100 eliminated fewer false negatives. Albumin concentrations increased significantly after vigorous exercise. The increase was almost eliminated when the albumin result was divided by the creatinine concentration suggesting that a decreased urine flow and not increased glomerular permeability causes an increase of post-exercise albuminuria. The same was true for proteinuria. A dipstick test plus an optical strip reader that can measure urine protein, albumin, and creatinine and calculate the appropriate ratios provides a better screening test for albuminuria or proteinuria than one measuring only albumin or protein.[Abstract] [Full Text] [Related] [New Search]