These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: The effect of serotonergic agents on haloperidol-induced striatal dopamine release in vivo: opposite role of 5-HT(2A) and 5-HT(2C) receptor subtypes and significance of the haloperidol dose used. Author: Lucas G, De Deurwaerdère P, Caccia S, Umberto Spampinato. Journal: Neuropharmacology; 2000 Apr 03; 39(6):1053-63. PubMed ID: 10727716. Abstract: This study investigated, using microdialysis in freely-moving rats, the role of serotonin (5-HT) and 5-HT(2) receptor subtypes in the enhancement of striatal dopamine (DA) release induced by various doses of haloperidol. The subcutaneous injection of 0.01, 0.1 or 1 mg/kg haloperidol dose-dependently increased DA outflow (160, 219 and 230% of baseline, respectively). The effect of 0.01 mg/kg haloperidol was, respectively, potentiated by the 5-HT uptake inhibitor citalopram (1 mg/kg, s.c.; +35%) and reduced by the 5-HT(1A) receptor agonist 8-OH-DPAT (0.025 mg/kg, s.c.; -32%). Also, it was reduced by the 5-HT(2A) antagonist SR 46349B (0.5 mg/kg, s.c. ; -40%) or by the 5-HT(2A/2B/2C) antagonist ritanserin (1.25 mg/kg, i.p.; -34%), and potentiated by the 5-HT(2B/2C) antagonist SB 206553 (5 mg/kg, i.p; +78%). Further, only this latter compound significantly modified basal dopamine release by itself (+26%). Dopamine released by 0.1 mg/kg haloperidol was enhanced (+100%) by citalopram, decreased (-61%) by SR 4634B, but unaltered by SB 206553. Finally, none of the compounds used were able to modify the enhancement of dopamine release induced by 1 mg/kg haloperidol. These results show that central 5-HT(2A) and 5-HT(2C) receptors exert an opposite (respectively excitatory and inhibitory) influence on DA release. Moreover, they suggest that the 5-HT(2A)-dependent modulation depends on the degree of central DA receptor blockade.[Abstract] [Full Text] [Related] [New Search]