These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Modulation of presumed cholinergic mesopontine tegmental neurons by acetylcholine and monoamines applied iontophoretically in unanesthetized cats.
    Author: Koyama Y, Sakai K.
    Journal: Neuroscience; 2000; 96(4):723-33. PubMed ID: 10727790.
    Abstract:
    The mesopontine tegmentum, which contains both cholinergic and non-cholinergic neurons, plays a crucial role in behavioral state control. Using microiontophoresis in unanesthetized cats, we have examined the effect of cholinergic and monoaminergic drugs on two putative cholinergic neurons located mostly in the laterodorsal tegmental nucleus and X area (or the cholinergic part of the nucleus tegmenti pedunculopontinus, pars compacta): one (type I-S) exhibiting slow tonic discharge during both waking and paradoxical sleep, and the other (PGO-on) displaying single spike activity during waking and burst discharges in association with ponto-geniculo-occipital (PGO) waves during paradoxical sleep. We found that: (i) application of carbachol, a potent cholinergic agonist, inhibited single spike activity in both PGO-on and type I-S neurons, but had no effect on the burst activity of PGO-on neurons during paradoxical sleep; the inhibition was associated with either blockade or increased latency of antidromic responses, suggesting membrane hyperpolarization; (ii) application of glutamate, norepinephrine, epinephrine, or histamine resulted in increased tonic discharge in both PGO-on and type I-S neurons; this was state-independent and resulted in a change in the firing mode of PGO-on neurons from phasic to tonic; (iii) application of serotonin had only a weak state-dependent inhibitory effect on a few type I-S neurons; and (iv) application of dopamine had no effect on either type of neuron. The present findings suggest that cholinergic, glutamatergic and monoaminergic (especially noradrenergic, adrenergic and histaminergic) inputs have the capacity to strongly modulate the cholinergic neurons, altering both their rate and mode of discharge, such as to shape their state specific activity, and thereby contribute greatly to their role in behavioral state control.
    [Abstract] [Full Text] [Related] [New Search]