These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: ATP inhibits glutamate synaptic release by acting at P2Y receptors in pyramidal neurons of hippocampal slices.
    Author: Mendoza-Fernández V, Andrew RD, Barajas-López C.
    Journal: J Pharmacol Exp Ther; 2000 Apr; 293(1):172-9. PubMed ID: 10734167.
    Abstract:
    It has been proposed that extracellular ATP inhibits synaptic release of glutamate from hippocampal CA1 synapses after its catabolism to adenosine. We investigated the possibility that at least part of this effect is mediated by ATP itself acting on P2Y receptors. ATP and various analogs decreased the amplitude and duration of glutamate-mediated excitatory postsynaptic potentials in all tested neurons. This effect was reversible and concentration-dependent and had the following rank order of agonist potency: AMP = ATP = adenosine-5'-O-(3-thio)triphosphate > adenosine = ADP. alpha,beta-Methylene ATP, beta,gamma-methylene ATP, 2-methylthioadenosine 5'-triphosphate, GTP, and UTP induced only a partial response. The depolarization induced by exogenous glutamate was not affected by ATP, indicating that this nucleotide acts presynaptically to inhibit glutamate-mediated excitatory postsynaptic potentials. Neither inhibition of ectonucleotidase activity with alpha,beta-methylene ADP, suramin, or pyridaxalphosphate-6-azophenyl-2',4'-disulfonic acid 4-sodium nor removal of extracellular adenosine (with adenosine deaminase) altered ATP effects. 8-Cyclopentyltheophylline competitively inhibited ATP effects, whereas P2 receptor antagonists (pyridaxalphosphate-6-azophenyl-2',4'-disulfonic acid 4-sodium, suramin, and reactive blue 2) were ineffective. ATP effects were by far more sensitive to pertussis toxin (PTX) than those of adenosine. After PTX, adenosine-5'-O-(3-thio)triphosphate induced only a partial response, and ATP concentration-response curve was biphasic. The second phase of this curve was blocked by adenosine deaminase, implying that it is mediated by adenosine as a result of ATP catabolism. Under control conditions, however, catabolism of ATP is not required to explain its actions. In conclusion, ATP inhibits synaptic release of glutamate by direct activation of P2Y receptors that are PTX- and 8-cyclopentyltheophylline-sensitive.
    [Abstract] [Full Text] [Related] [New Search]