These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: A novel peptide antagonist of CXCR4 derived from the N-terminus of viral chemokine vMIP-II. Author: Zhou N, Luo Z, Luo J, Hall JW, Huang Z. Journal: Biochemistry; 2000 Apr 04; 39(13):3782-7. PubMed ID: 10736178. Abstract: The viral macrophage inflammatory protein-II (vMIP-II) encoded by Kaposi's sarcoma-associated herpesvirus is unique among all known chemokines in that vMIP-II shows a broad-spectrum interaction with both CC and CXC chemokine receptors including CCR5 and CXCR4, two principal coreceptors for the cell entry of human immunodeficiency virus type 1 (HIV-1). To elucidate the mechanism of the promiscuous receptor interaction of vMIP-II, synthetic peptides derived from the N-terminus of vMIP-II were studied. In contrast to the full-length protein that recognizes both CXCR4 and CCR5, a peptide corresponding to residues 1-21 of vMIP-II (LGASWHRPDKCCLGYQKRPLP) was shown to strongly bind CXCR4, but not CCR5. The IC(50) of this peptide in competing with CXCR4 binding of (125)I-SDF-1alpha is 190 nM as compared to the IC(50) of 14.8 nM of native vMIP-II in the same assay. The peptide selectively prevented CXCR4 signal transduction and coreceptor function in mediating the entry of T- and dual-tropic HIV-1 isolates, but not those of CCR5. Further analysis of truncated peptide analogues revealed the importance of the first five residues for the activity with CXCR4. These results suggest that the N-terminus of vMIP-II is essential for its function via CXCR4. In addition, they reveal a possible mechanism for the distinctive interactions of vMIP-II with different chemokine receptors, a notion that may be further exploited to dissect the structural basis of its promiscuous biological function. Finally, the potent CXCR4 peptide antagonist shown here could serve as a lead for the development of new therapeutic agents for HIV infection and other immune system diseases.[Abstract] [Full Text] [Related] [New Search]