These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Electromyographic analysis of exercise resulting in symptoms of muscle damage. Author: McHugh MP, Connolly DA, Eston RG, Gleim GW. Journal: J Sports Sci; 2000 Mar; 18(3):163-72. PubMed ID: 10737267. Abstract: Surface electromyographic (EMG) signals were recorded from the hamstring muscles during six sets of submaximal isokinetic (2.6 rad x s(-1)) eccentric (11 men, 9 women) or concentric (6 men, 4 women) contractions. The EMG per unit torque increased during eccentric (P < 0.01) but not during concentric exercise. Similarly, the median frequency increased during eccentric (P < 0.01) but not during concentric exercise. The EMG per unit torque was lower for submaximal eccentric than maximum isometric contractions (P < 0.001), and lower for submaximal concentric than maximum isometric contractions (P < 0.01). The EMG per unit torque was lower for eccentric than concentric contractions (P < 0.05). The median frequency was higher for submaximal eccentric than maximum isometric contractions (P < 0.001); it was similar, however, between submaximal concentric and maximum isometric contractions (P = 0.07). Eccentric exercise resulted in significant isometric strength loss (P < 0.01), pain (P < 0.01) and muscle tenderness (P < 0.05). The greatest strength loss was seen 1 day after eccentric exercise, while the most severe pain and muscle tenderness occurred 2 days after eccentric exercise. A lower EMG per unit torque is consistent with the selective recruitment of a small number of motor units during eccentric exercise. A higher median frequency during eccentric contractions may be explained by selective recruitment of fast-twitch motor units. The present results are consistent with the theory that muscle damage results from excessive stress on a small number of active fibres during eccentric contractions.[Abstract] [Full Text] [Related] [New Search]