These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Longitudinal changes in submaximal oxygen uptake in 11- to 13-year-olds.
    Author: Welsman JR, Armstrong N.
    Journal: J Sports Sci; 2000 Mar; 18(3):183-9. PubMed ID: 10737269.
    Abstract:
    The aim of this study was to monitor longitudinal changes in young people's submaximal oxygen uptake (VO2) responses during horizontal treadmill running at 8 km x h(-1). The 236 participants (118 boys, 118 girls) were aged 11.2+/-0.4 years (mean +/- s) at the onset of the study. Submaximal VO2, peak VO2 and anthropometry were recorded annually for three consecutive years. The data were analysed using multi-level regression modelling within a multiplicative, allometric framework. The initial model examined sex, age and maturity-related changes in submaximal VO2 relative to body mass as the sole anthropometric covariate. Our results demonstrate that the conventional ratio standard ml x kg(-1) x min(-1) does not adequately describe the true relationship between body mass and submaximal VO2 during this period of growth. The effects of maturity and age were non-significant, but girls consumed significantly less VO2 than boys running at 8 km x h(-1). In subsequent models, stature was shown to be a significant explanatory variable, but this effect became non-significant when the sum of two skinfolds was added. Thus, within this population, submaximal VO2 responses were explained predominantly by changes in body mass and skinfold thicknesses, with no additional maturity-related increments. When differences in body mass and skinfolds were controlled for, there was still a difference between the sexes in submaximal VO2, with girls becoming increasingly more economical with age.
    [Abstract] [Full Text] [Related] [New Search]