These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Three different vasoactive responses of rat tail artery to nicotine. Author: Wang R, Wang Z. Journal: Can J Physiol Pharmacol; 2000 Jan; 78(1):20-8. PubMed ID: 10741756. Abstract: The vasoactive effects of nicotine on isolated rat tail artery tissues were studied. Nicotine transiently contracted rat tail artery tissues (EC50, 55.6 +/- 2 microM) in an extracellular Ca2+ dependent and endothelium-independent fashion. The blockade of alpha1-adrenoceptors, but not alpha2-adrenoceptors or P2X purinoceptors, inhibited the nicotine-induced contraction by 38 +/- 7% (p < 0.05). Nicotine (1 mM) depolarized membrane by 13 +/- 3 mV, but did not affect L-type Ca2+ channel currents, of the isolated rat tail artery smooth muscle cells. The phenylephrine-precontracted tail artery tissues were relaxed by nicotine (EC50, 0.90 +/- 0.31 mM), which was significantly inhibited after the blockade of nicotinic receptors. Simultaneous removal of phenylephrine and nicotine, after a complete relaxation of the phenylephrine-precontracted tail artery strips was achieved by nicotine at accumulated concentrations (> or =10 mM), triggered a Ca2+-dependent rebound long-lasting vasoconstriction (n = 20). This rebound contraction was abolished in the absence of calcium or in the presence of tetracaine in the bath solution. Pretreatment of vascular tissues with a nicotinic receptor antagonist did not affect the nicotine-induced vasoconstriction or nicotine withdrawal induced rebound contraction. The elucidation of the triphasic vascular effects of nicotine and the underlying mechanisms is important for a better understanding of the complex vascular actions of nicotine.[Abstract] [Full Text] [Related] [New Search]