These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Polyamine triggering of exocytosis in Paramecium involves an extracellular Ca(2+)/(polyvalent cation)-sensing receptor, subplasmalemmal Ca-store mobilization and store-operated Ca(2+)-influx via unspecific cation channels. Author: Klauke N, Blanchard M, Plattner H. Journal: J Membr Biol; 2000 Mar 15; 174(2):141-56. PubMed ID: 10742458. Abstract: The polyamine secretagogue, aminoethyldextran (AED), causes a cortical [Ca(2+)] transient in Paramecium cells, as analyzed by fluorochrome imaging. Our most essential findings are: (i) Cortical Ca(2+) signals also occur when AED is applied in presence of the fast Ca(2+) chelator, BAPTA. (ii) Extracellular La(3+) application causes within seconds a rapid, reversible fluorescence signal whose reversibility can be attributed to a physiological [Ca(2+)](i) transient (while injected La(3+) causes a sustained fluorescence signal). (iii) Simply increasing [Ca(2+)](o) causes a similar rapid, short-lived [Ca(2+)](i) transient. All these phenomena, (i-iii), are compatible with activation of an extracellular "Ca(2+)/(polyvalent cation)-sensing receptor" known from some higher eukaryotic systems, where this sensor (responding to Ca(2+), La(3+) and some multiply charged cations) is linked to cortical calcium stores which, thus, are activated. In Paramecium, such subplasmalemmal stores ("alveolar sacs") are physically linked to the cell membrane and they can also be activated by the Ca(2+) releasing agent, 4-chloro-m-cresol, just like in Sarcoplasmic Reticulum. Since this drug causes a cortical Ca(2+) signal also in absence of Ca(2+)(o) we largely exclude a "Ca(2+)-induced Ca(2+) release" (CICR) mechanism. Our finding of increased cortical Ca(2+) signals after store depletion and re-addition of extracellular Ca(2+) can be explained by a "store-operated Ca(2+) influx" (SOC), i.e., a Ca(2+) influx superimposing store activation. AED stimulation in presence of Mn(2+)(o) causes fluorescence quenching in Fura-2 loaded cells, indicating involvement of unspecific cation channels. Such channels, known to occur in Paramecium, share some general characteristics of SOC-type Ca(2+) influx channels. In conclusion, we assume the following sequence of events during AED stimulated exocytosis: (i) activation of an extracellular Ca(2+)/polyamine-sensing receptor, (ii) release of Ca(2+) from subplasmalemmal stores, (iii) and Ca(2+) influx via unspecific cation channels. All three steps are required to produce a steep cortical [Ca(2+)] signal increase to a level required for full exocytosis activation. In addition, we show formation of [Ca(2+)] microdomains (</=0.5 microm, </=33 msec) upon stimulation.[Abstract] [Full Text] [Related] [New Search]