These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Movement of plant viruses is delayed in a beta-1,3-glucanase-deficient mutant showing a reduced plasmodesmatal size exclusion limit and enhanced callose deposition.
    Author: Iglesias VA, Meins F.
    Journal: Plant J; 2000 Jan; 21(2):157-66. PubMed ID: 10743656.
    Abstract:
    Susceptibility to virus infection is decreased in a class I beta-1,3-glucanase (GLU I)-deficient mutant (TAG4.4) of tobacco generated by antisense transformation. TAG4.4 exhibited delayed intercellular trafficking via plasmodesmata of a tobamovirus (tobacco mosaic virus), of a potexvirus (recombinant potato virus X expressing GFP), and of the movement protein (MP) 3a of a cucumovirus (cucumber mosaic virus). Monitoring the cell-to-cell movement of dextrans and peptides by a novel biolistic method revealed that the plasmodesmatal size exclusion limit (SEL) of TAG4.4 was also reduced from 1.0 to 0.85 nm. Therefore, GLU I-deficiency has a broad effect on plasmodesmatal movement, which is not limited to a particular virus type. Deposition of callose, a substrate for beta-1,3-glucanases, was increased in TAG4.4 in response to 32 degrees C treatment, treatment with the fungal elicitor xylanase, and wounding, suggesting that GLU I has an important function in regulating callose metabolism. Callose turnover is thought to regulate plasmodesmatal SEL. We propose that GLU I induction in response to infection may help promote MP-driven virus spread by degrading callose.
    [Abstract] [Full Text] [Related] [New Search]