These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Coding efficiency and information rates in transmembrane signaling.
    Author: Prank K, Gabbiani F, Brabant G.
    Journal: Biosystems; 2000 Feb; 55(1-3):15-22. PubMed ID: 10745104.
    Abstract:
    A variety of cell types responds to hormonal stimuli by repetitive spikes in the intracellular concentration of calcium ([Ca(2+)](i)) which have been demonstrated to encode information in their frequency, amplitude, and duration. These [Ca(2+)](i)-spike trains are able to specifically regulate distinct cellular functions. Using a mathematical model for receptor-controlled [Ca(2+)](i) oscillations in hepatocytes we investigate the encoding of fluctuating hormonal signals in [Ca(2+)](i)-spike trains. The transmembrane information transfer is quantified by using an information-theoretic reverse-engineering approach which allows to reconstruct the dynamic hormonal stimulus from the [Ca(2+)](i)-spike trains. This approach allows to estimate the accuracy of coding as well as the rate of transmembrane information transfer. We found that up to 87% of the dynamic stimulus information can be encoded in the [Ca(2+)](i)-spike train at a maximum information transfer rate of 1.1 bit per [Ca(2+)](i)-spike. These numerical results for humoral information transfer are in the same order as in a number of sensory neuronal systems despite several orders of magnitude different time scales of operation suggesting a universal principle of information processing in both biological systems.
    [Abstract] [Full Text] [Related] [New Search]