These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: A common pharmacophore for Taxol and the epothilones based on the biological activity of a taxane molecule lacking a C-13 side chain.
    Author: He L, Jagtap PG, Kingston DG, Shen HJ, Orr GA, Horwitz SB.
    Journal: Biochemistry; 2000 Apr 11; 39(14):3972-8. PubMed ID: 10747785.
    Abstract:
    Extensive structure-activity studies done with Taxol have identified the side chain at C-13 as one of the requirements for biological activity. Baccatin III, an analogue of Taxol lacking the C-13 side chain, has none of the biological characteristics of Taxol. Since 2-m-azido Taxol, a Taxol derivative with a m-azido substituent in the C-2 benzoyl ring, has greater activity than Taxol, we questioned whether 2-m-azido baccatin III might be active. 2-m-Azido baccatin III inhibited the proliferation of human cancer cells at nanomolar concentrations, blocked cells at mitosis, and reorganized the interphase microtubules into distinct bundles, a typical morphological change induced by Taxol. In contrast to 2-m-azido baccatin III, 2-p-azido baccatin III was similar to baccatin III, having no Taxol-like activity, further indicating the specificity and significance of the 2-meta position substituent. Molecular modeling studies done with the C-2 benzoyl ring of Taxol indicated that it fits into a pocket formed by His227 and Asp224 on beta-tubulin and that the 2-m-azido, in contrast to the 2-p-azido substituent, is capable of enhancing the interaction between the benzoyl group and the side chain of Asp224. The observation that the C-13 side chain is not an absolute requirement for biological activity in a taxane molecule has enabled the development of a new common pharmacophore model between Taxol and the epothilones.
    [Abstract] [Full Text] [Related] [New Search]