These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Cloning and expression of the histo-blood group Pk UDP-galactose: Ga1beta-4G1cbeta1-cer alpha1, 4-galactosyltransferase. Molecular genetic basis of the p phenotype. Author: Steffensen R, Carlier K, Wiels J, Levery SB, Stroud M, Cedergren B, Nilsson Sojka B, Bennett EP, Jersild C, Clausen H. Journal: J Biol Chem; 2000 Jun 02; 275(22):16723-9. PubMed ID: 10747952. Abstract: The molecular genetic basis of the P histo-blood group system has eluded characterization despite extensive studies of the biosynthesis of the P(1), P, and P(k) glycolipids. The main controversy has been whether a single or two distinct UDP-Gal:Galbeta1-R 4-alpha-galactosyltransferases catalyze the syntheses of the structurally related P(1) and P(k) antigens. The P(1) polymorphism is linked to 22q11.3-ter. Data base searches with the coding region of an alpha4GlcNAc-transferase identified a novel homologous gene at 22q13.2 designated alpha4Gal-T1. Expression of full coding constructs of alpha4Gal-T1 in insect cells revealed it encoded P(k) but not P(1) synthase activity. Northern analysis showed expression of the transcript correlating with P(k) synthase activity and antigen expression in human B cell lines. Transfection of P(k)-negative Namalwa cells with alpha4Gal-T1 resulted in strong P(k) expression. A single homozygous missense mutation, M183K, was found in six Swedish individuals of the rare p phenotype, confirming that alpha4Gal-T1 represented the P(k) gene. Sequence analysis of the coding region of alpha4Gal-T1 in P(1)+/- individuals did not reveal polymorphisms correlating with P(1)P(2) typing.[Abstract] [Full Text] [Related] [New Search]