These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Characterization of elements mediating regulation of phosphoenolpyruvate carboxykinase gene transcription by protein kinase A and insulin. Identification of a distinct complex formed in cells that mediate insulin inhibition.
    Author: Yeagley D, Moll J, Vinson CA, Quinn PG.
    Journal: J Biol Chem; 2000 Jun 09; 275(23):17814-20. PubMed ID: 10748164.
    Abstract:
    The in vivo pattern of induction of phosphoenolpyruvate carboxykinase (PEPCK) gene transcription by cAMP and its inhibition by insulin is reproduced in H4IIe cells and is mediated by a bipartite cAMP/insulin response unit (C/IRU) consisting of a cAMP response element (-95/-87) and an upstream enhancer, AC (-271/-225). Studies in HepG2 cells showed that binding of AP-1 and CAAT/enhancer-binding protein (C/EBP) to AC is required for induction by cAMP, but insulin did not inhibit cAMP-induced PEPCK expression in HepG2 cells. Binding of H4IIe nuclear proteins to an AC element probe was inhibited by antibodies or a consensus site for C/EBP, but not AP-1. Transfection with dominant negative bZIP factors, which prevent endogenous factors from binding to DNA, showed that elimination of cAMP regulatory element-binding protein CREB or C/EBP activity blocked induction by protein kinase A (PKA), whereas elimination of AP-1 activity had no effect. In addition, promoters with multiple CREB sites, or a single CREB site and multiple C/EBP sites, mediated PKA induction, but this was inhibited to no greater extent than basal activity was by insulin. These results indicate that an AC factor other than C/EBP must mediate insulin inhibition. An A-site probe (-265/-247) or a probe across the middle of the AC element (-256/-237) competed for complexes formed by factors other than AP-1 or C/EBP. However, analysis of competitor oligonucleotides and antibodies for candidate factors failed to identify other factors. Scanning mutations throughout the AC element interfered with induction but allowed us to define five overlapping sites for regulatory factors in AC and to design probes binding just one or two factors. Comparison of the protein-DNA complexes formed on these smaller probes revealed that a specific complex present in rat liver and H4IIe cell nuclear extracts differed from those formed by HepG2 cell nuclear extracts. Our results suggest that multiple factors binding the AC element of the C/IRU interact with each other and CREB to regulate PEPCK induction by cAMP and inhibition by insulin and that the unique factor expressed in H4IIe cells is a candidate for involvement in insulin regulation of PKA-induced PEPCK gene transcription.
    [Abstract] [Full Text] [Related] [New Search]