These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Altered dermatan sulfate structure and reduced heparin cofactor II-stimulating activity of biglycan and decorin from human atherosclerotic plaque. Author: Shirk RA, Parthasarathy N, San Antonio JD, Church FC, Wagner WD. Journal: J Biol Chem; 2000 Jun 16; 275(24):18085-92. PubMed ID: 10749870. Abstract: Biglycan and decorin are small dermatan sulfate-containing proteoglycans in the extracellular matrix of the artery wall. The dermatan sulfate chains are known to stimulate thrombin inhibition by heparin cofactor II (HCII), a plasma proteinase inhibitor that has been detected within the artery wall. The purpose of this study was to analyze the HCII-stimulatory activity of biglycan and decorin isolated from normal human aorta and atherosclerotic lesions type II through VI and to correlate activity with dermatan sulfate chain composition and structure. Biglycan and decorin from plaque exhibited a 24-75% and 38-79% loss of activity, respectively, in thrombin-HCII inhibition assays relative to proteoglycan from normal aorta. A significant negative linear relationship was observed between lesion severity and HCII stimulatory activity (r = 0.79, biglycan; r = 0.63, decorin; p < 0.05). Biglycan, but not decorin, from atherosclerotic plaque contained significantly reduced amounts of iduronic acid and disulfated disaccharides DeltaDi-2,4S and DeltaDi-4,6S relative to proteoglycan from normal artery. Affinity coelectrophoresis analysis of a subset of samples demonstrated that increased interaction of proteoglycan with HCII in agarose gels paralleled increased activity in thrombin-HCII inhibition assays. In conclusion, both biglycan and decorin from atherosclerotic plaque possessed reduced activity with HCII, but only biglycan demonstrated a correlation between activity and specific glycosaminoglycan structural features. Loss of the ability of biglycan and decorin in atherosclerotic lesions to regulate thrombin activity through HCII may be critical in the progression of the disease.[Abstract] [Full Text] [Related] [New Search]