These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Copper, zinc superoxide dismutase enhances DNA damage and mutagenicity induced by cysteine/iron. Author: Yoon SJ, Koh YH, Floyd RA, Park JW. Journal: Mutat Res; 2000 Mar 14; 448(1):97-104. PubMed ID: 10751627. Abstract: Oxidative DNA damage caused by a cysteine metal-catalyzed oxidation system (Cys-MCO) comprised of Fe(3+), O(2), and a cysteine as an electron donor was enhanced by copper, zinc superoxide dismutase (CuZnSOD) in a concentration-dependent manner, as reflected by the formation of 8-hydroxy-2'-deoxyguanosine (8-OH-dG) and strand breaks. Unlike CuZnSOD, manganese SOD (MnSOD) as well as iron SOD (FeSOD) did not enhance DNA damage. The capacity of CuZnSOD to enhance damage to DNA was inhibited by a spin-trapping agent, 5, 5-dimethyl-1-pyrroline N-oxide (DMPO) and a metal chelator, diethylenetriaminepentaacetic acid (DETAPAC). The deoxyribose assay showed that hydroxyl free radicals were generated in the reaction of CuZnSOD with Cys-MCO. We found that the Cys-MCO system caused the release of free copper from CuZnSOD. CuZnSOD also caused the two-fold enhancement of a mutation in the pUC18 lacZ' gene in the presence of Cys-MCO when measured as a loss of alpha-complementation. Based on these results, we interpret the effects of CuZnSOD on Cys-MCO-induced DNA damage and mutation as due to reactive oxygen species, probably hydroxyl free radicals, formed by the reaction of free Cu(2+), released from oxidatively damaged CuZnSOD, and H(2)O(2) produced by the Cys-MCO system.[Abstract] [Full Text] [Related] [New Search]