These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Simultaneous intrastriatal and intranigral grafting (double grafts) in the rat model of Parkinson's disease.
    Author: Mendez I, Baker KA, Hong M.
    Journal: Brain Res Brain Res Rev; 2000 Apr; 32(1):328-39. PubMed ID: 10751681.
    Abstract:
    Experimental and clinical studies of neural transplantation in Parkinson's disease have focused on the placement of fetal dopaminergic grafts not in their ontogenic site (substantia nigra) but in the main nigral target area (striatum). The reason for this is the apparent inability of intranigral nigral grafts to extend axons for long distances reinnervating the ipsilateral striatum. This review presents previous work by our laboratory [I. Mendez, M. Hong, Reconstruction of the striato-nigro-striatal circuitry by simultaneous double dopaminergic grafts: a tracer study using fluorogold and horseradish peroxidase, Brain Res. 778 (1997) 194-205; I. Mendez, D. Sadi, M. Hong., Reconstruction of the nigrostriatal pathway by simultaneous intrastriatal and intranigral dopaminergic transplants, J. Neurosci. 16 (1996) 7216-7227] using a new transplantation strategy aimed at restoring dopaminergic innervation of the nigra and striatum by simultaneous dopaminergic transplants placed in the substantia nigra and ipsilateral striatum (double grafts) in the 6-hydroxydopamine lesioned adult rat brain. These double grafts achieve not only greater striatal reinnervation than the standard intrastriatal grafts but also produce a faster and more complete behavioural recovery six weeks after transplantation. Injection of the retrograde tracer fluorogold into the striatum and nigra resulted in fluorescent labeled cells within the intranigral graft and the intrastriatal graft and surrounding striatum, respectively suggesting that these double grafts promote at least partial reconstruction of the nigrostriatal dopaminergic pathway. This double graft strategy may have potential implications in clinical neural transplantation for Parkinson's disease.
    [Abstract] [Full Text] [Related] [New Search]