These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Mutations in conserved domains IV and VI of the large (L) subunit of the sendai virus RNA polymerase give a spectrum of defective RNA synthesis phenotypes. Author: Feller JA, Smallwood S, Horikami SM, Moyer SA. Journal: Virology; 2000 Apr 10; 269(2):426-39. PubMed ID: 10753721. Abstract: The Sendai virus RNA polymerase is a complex of two virus-encoded proteins, the phosphoprotein (P) and the large (L) protein. When aligned with amino acid sequences of L proteins from other negative-sense RNA viruses, the Sendai L protein contains six regions of good conservation, designated domains I-VI, which have been postulated to be important for the various enzymatic activities of the polymerase. To directly address the roles of domains IV and VI, 14 site-directed mutations were constructed either by changing clustered charged amino acids to ala or by substituting selected Sendai L amino acids with the corresponding sequence from measles virus L. Each mutant L protein was tested for its ability to transcribe and replicate the Sendai genome. The series of mutations created a spectrum of phenotypes, from those with significant, near wild-type, activity to those being completely defective for all RNA synthesis. The inactive L proteins, however, were still able to bind P protein and form a polymerase capable of binding the nucleocapsid template. The remainder of the mutations reduced, but did not abolish, enzymatic activity and included one mutant with a specific defect in the synthesis of the leader RNA compared with mRNA, and three mutants that replicated genome RNA much more efficiently in vivo than in vitro. Together, these data suggest that even within a domain, the function of the Sendai L protein is likely to be very complex. In addition, SS3 and SS10 L in domain IV and SS13 L in domain VI were shown to be temperature-sensitive. Both SS3 and SS10 gave significant, although not wild-type, activity at 32 degrees C; however, each was completely inactivated for all RNA synthesis at 37 and 39.6 degrees C. SS13 was completely inactive only when synthesized at the higher temperature. Each polymerase synthesized at 32 degrees C could only be partially heat inactivated in vitro at 39.6 degrees C, suggesting that inactivation involves both thermal lability of the protein and temperature sensitivity for its synthesis.[Abstract] [Full Text] [Related] [New Search]