These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: NF-kappaB activation through IKK-i-dependent I-TRAF/TANK phosphorylation. Author: Nomura F, Kawai T, Nakanishi K, Akira S. Journal: Genes Cells; 2000 Mar; 5(3):191-202. PubMed ID: 10759890. Abstract: BACKGROUND: NF-kappaB is an ubiquitously expressed transcription factor that plays an important role in the immune, anti-apoptotic and inflammatory responses. NF-kappaB is normally sequestered in the cytoplasm by interacting with inhibitory IkappaB molecules. Upon stimulation, IkappaB is phosphorylated and subsequently degraded by the proteasome, allowing NF-kappaB to translocate into the nucleus where they regulate target gene expression. Two kinases, IKK-alpha and IKK-beta, which are responsible for IkappaB phosphorylation were recently identified. We have recently identified a cytokine inducible IKK-i, a kinase related to IKK-alpha and -beta. IKK-i significantly induced NF-kappaB activation upon over-expression, as did IKK-alpha and IKK-beta. Unlike IKK-alpha and IKK-beta, IKK-i phosphorylated Ser36 but not Ser32 in vitro, suggesting that IKK-i activates NF-kappaB by distinct mechanisms from the conventional IKKs. RESULTS: I-TRAF/TANK was isolated as a molecule that interacts specifically with inducible IkappaB kinase (IKK-i) by the yeast two-hybrid screening procedure. The association of IKK-i and I-TRAF is mediated via the interaction between the N-terminal domain of I-TRAF and the C-terminal portion of IKK-i. In vitro kinase assays demonstrate that IKK-i phosphorylates I-TRAF in the middle portion that associates with TRAF2. Interestingly, TRAF2 is freed from the I-TRAF/TRAF2 complex after I-TRAF phosphorylation. NF-kappaB activation by IKK-i is significantly blocked by coexpression of the N-terminal domain of I-TRAF, dominant negative TRAF2, and dominant negative NIK and IKK-beta. IKK-i over-expression also induced c-Jun N-terminal kinase. These results show that I-TRAF is a substrate of IKK-i. NF-kappaB activation by IKK-i may be mediated through phosphorylation of I-TRAF by IKK-i and subsequent liberation of TRAF2. CONCLUSION: These results indicate that NF-kappaB activation by IKK-i is mediated through phosphorylation of I-TRAF/TANK by IKK-i and subsequent liberation of TRAF2.[Abstract] [Full Text] [Related] [New Search]