These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Purinergic modulation of [(3)H]GABA release from rat hippocampal nerve terminals. Author: Cunha RA, Ribeiro JA. Journal: Neuropharmacology; 2000 Apr 27; 39(7):1156-67. PubMed ID: 10760359. Abstract: The hippocampal GABAergic system is assumed not to be a target for purine modulation. We have now confirmed that neither adenosine A(1) and A(3) receptor nor nucleotide P(2) or P(4) receptor activation modified the K(+)-evoked [(3)H]GABA release from hippocampal synaptosomes. However, activation of adenosine A(2A) receptors with CGS 21680 (10 nM) or HENECA (30 nM) facilitated GABA release by 32% and 21%, respectively. These effects were prevented by the A(2A) antagonist, ZM 241385 (20 nM). A(2A) receptors may activate adenylate cyclase and protein kinase A since CGS 21680 (10 nM) facilitation was partially prevented by 8-bromo-cAMP (1 mM), forskolin (10 microM) and HA-1004 (10 microM). Protein kinase C may also be recruited, since chelerythrine (6 microM) and phorbol-12, 13-didecanoate (250 nM) attenuated CGS 21680 (10 nM) facilitation of [(3)H]GABA release. Omega-agatoxin-IVA (200 nM) occluded CGS 21680 facilitation suggesting the involvement of P-type calcium channels. Thus, the adenosine A(2A) receptor system appears to be one of the first presynaptic neuromodulatory systems able to enhance the evoked release of GABA from hippocampal nerve terminals.[Abstract] [Full Text] [Related] [New Search]