These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Goodness-of-fit in generalized nonlinear mixed-effects models. Author: Vonesh EF, Chinchilli VM, Pu K. Journal: Biometrics; 1996 Jun; 52(2):572-87. PubMed ID: 10766504. Abstract: In recent years, generalized linear and nonlinear mixed-effects models have proved to be powerful tools for the analysis of unbalanced longitudinal data. To date, much of the work has focused on various methods for estimating and comparing the parameters of mixed-effects models. Very little work has been done in the area of model selection and goodness-of-fit, particularly with respect to the assumed variance-covariance structure. In this paper, we present a goodness-of-fit statistic which can be used in a manner similar to the R2 criterion in linear regression for assessing the adequacy of an assumed mean and variance-covariance structure. In addition, we introduce an approximate pseudo-likelihood ratio test for testing the adequacy of the hypothesized convariance structure. These methods are illustrated and compared to the usual normal theory likelihood methods (Akaike's information criterion and the likelihood ratio test) using three examples. Simulation results indicate the pseudo-likelihood ratio test compares favorably with the standard normal theory likelihood ratio test, but both procedures are sensitive to departures from normality.[Abstract] [Full Text] [Related] [New Search]